Characterization of the interface between adsorbed fibronectin and human embryonic stem cells.

نویسندگان

  • Deepak M Kalaskar
  • Joan E Downes
  • Patricia Murray
  • David H Edgar
  • Rachel L Williams
چکیده

The cell-substrate interface plays a key role in the regulation of cell behaviour. Defining the properties of this interface is particularly important for human embryonic stem (hES) cell culture, because changes in this environment can regulate hES cell differentiation. It has been established that fibronectin-coated surfaces can promote the attachment, growth and maintenance of the undifferentiated phenotype of hES cells. We investigated the influence of the surface density of adsorbed fibronectin on hES cell behaviour in defined serum-free culture conditions and demonstrated that only 25 per cent surface saturation was required to maintain attachment, growth and maintenance of the undifferentiated phenotype. The influence of surface-adsorbed fibronectin fragments was compared with whole fibronectin, and it was demonstrated that the 120 kDa fragment central binding domain alone was able to sustain hES cells in an undifferentiated phenotype in a similar fashion to fibronectin. Furthermore, hES cell attachment to both fibronectin and the 120 kDa fragment was mediated by integrin α5β1. However, although a substrate-attached synthetic arginine-glycine-aspartic acid (RGD) peptide alone was able to promote the attachment and spreading of fibroblasts, it was inactive for hES cells, indicating that stem cells have different requirements in order to attach and spread on the central fibronectin RGD-cell-binding domain. This study provides further information on the characteristics of the cell-substrate interface required to control hES cell behaviour in clearly defined serum-free conditions, which are needed for the development of therapeutic applications of hES cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mesenchymal Stem/Stromal-Like Cells from Diploid and Triploid Human Embryonic Stem Cells Display Different Gene Expression Profiles

Background: Human ESCs-MSCs open a new insight into future cell therapy applications, due to their unique characteristics, including immunomodulatory features, proliferation, and differentiation. Methods: Herein, hESCs-MSCs were characterized by IF technique with CD105 and FIBRONECTIN as markers and FIBRONECTIN, VIMENTIN, CD10, CD105, and CD14 genes using RT-PCR technique. FACS was performed fo...

متن کامل

Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells

Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...

متن کامل

The characterization of CD marker profile of breast milk-derived stem cell

Background  The mammary gland in humans is a dynamic organ that undergoes significant developmental changes during pregnancy, lactation, and involution. Stem cells derived from human breast milk possess the adult stem cell-like characteristics such as self-renewal, proliferative and differentiate potential. This source of stem cells avoids invasive procedures and the ethical controversy of emb...

متن کامل

Differentiation of human embryonic stem cells into neurons

Human embryonic stem (ES) cells are undifferentiated pluripotent cells derived from the inner cell mass of blastocyst stage embryos. These unique cell lines have the potential to form virtually any cell type in the body and can be propagated in vitro indefinitely in an undifferentiated state. These cells are capable of forming embryoid bodies (EB) that contain cells from all three embryonic lin...

متن کامل

Expression of Endoderm and Hepatic Specific Genes after in vitro Differentiation of Human Embryonic Stem Cells

Background: Human embryonic stem cells (hESC), which are derived from the inner cell mass of the blastocysts, have been considered to be pluripotent cells. In this study we examine the differentiating potential of hESC into hepatocytes by characterization of the expression of endoderm and liver-specific genes. Methods: hESC were cultivated in suspension to form aggregates, the embryoid bodies. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 10 83  شماره 

صفحات  -

تاریخ انتشار 2013